Analog Neural Nets with Gaussian or Other Common Noise Distribution Cannot Recognize Arbitrary Regular Languages
نویسندگان
چکیده
We consider recurrent analog neural nets where the output of each gate is subject to gaussian noise or any other common noise distribution that is nonzero on a sufficiently large part of the state-space. We show that many regular languages cannot be recognized by networks of this type, and we give a precise characterization of languages that can be recognized. This result implies severe constraints on possibilities for constructing recurrent analog neural nets that are robust against realistic types of analog noise. On the other hand, we present a method for constructing feedforward analog neural nets that are robust with regard to analog noise of this type.
منابع مشابه
Analog Neural Nets with Gaussian or Other Common Noise Distributions Cannot Recognize Arbitrary Regular Languages
We consider recurrent analog neural nets where the output of each gate is subject to gaussian noise or any other common noise distribution that is nonzero on a sufficiently large part of the state-space. We show that many regular languages cannot be recognized by networks of this type, and we give a precise characterization of languages that can be recognized. This result implies severe constra...
متن کاملAnalog Neural Nets with Gaussian or other CommonNoise Distributions cannot Recognize
We consider recurrent analog neural nets where the output of each gate is subject to Gaussian noise, or any other common noise distribution that is nonzero on a large set. We show that many regular languages cannot be recognized by networks of this type, and we give a precise characterization of those languages which can be recognized. This result implies severe constraints on possibilities for...
متن کاملA Precise Characterization of the Class of Languages Recognized by Neural Nets under Gaussian and Other Common Noise Distributions
We consider recurrent analog neural nets where each gate is subject to Gaussian noise, or any other common noise distribution whose probability density function is nonzero on a large set. We show that many regular languages cannot be recognized by networks of this type, for example the language begins with , and we give a precise characterization of those languages which can be recognized. This...
متن کاملA Precise Characterization of theClass of Languages Recognized byNeural Nets under Gaussian andother Common Noise
We consider recurrent analog neural nets where each gate is subject to Gaussian noise, or any other common noise distribution whose probability density function is nonzero on a large set. We show that many regular languages cannot be recognized by networks of this type, for example the language fw 2 f0; 1g j w begins with 0g, and we give a precise characterization of those languages which can b...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 11 3 شماره
صفحات -
تاریخ انتشار 1997